数学联邦政治世界观
超小超大

特殊篇章(数学解释)八

可数不完全的超滤生成的超幂模型是可数饱和:

事实上我们有比题目更好的条件:假设可数语言 Ը, I 是指标集, U 是 I 上的可数不完全超滤, 𝕬ᵢ 是 Ը 模型,那么 ∏ᵢ 𝕬ᵢ/≡∪=𝕬 是 ω₁ 饱和模型。

证明:假设 B ⊆ A 是一个可数子集, p(x) 是以 B 中元素为参数的一个型,有可数语言可得 p(x) 可数,因此不妨设

p(x)={ψₙ(x,[fₙ₁],⋯,[fₙₖ])}ᵢ<ω (为方便起见,我们设 ψᵢ(x,y→) 中的自由变元个数相同,都为 k+1 )。令 ϕₙ(x)=⋀ᵢ≤ₙ ψᵢ(x) ,由于 p(x) 在 𝕬 中有穷可满足,因此对于任意 n ,都有 𝕬 实现 ϕₙ(x) ,即 Yᵢ={i∈I:𝕬ᵢ ⊨ ∃xϕₙ(x,fₙ₁(i),⋯,fₙₖ(i))}∈U 。

由于 U 是可数不完全的,因此存在序列 X₀⊃⋯⊃Xₙ⊃⋯ 满足 ∀i∈ω,Xᵢ∈U 且 ⋂Xᵢ=∅ ,令 Zᵢ=Xᵢ∩Yᵢ ,那么 Zᵢ∈U∧⋂ᵢ Zᵢ=∅ 。定义 ρ:I→ω 满足 ρ(i)=max{n∈ω:i∈Zn} ,显然有 i∈Zₙ ↔ ρ(i)≥n 。现在我们定义一个函数 g:I→⋃ᵢ Aᵢ ,使得 [g] 实现 p(x) :假设 i∈I∧ρ(i)=0 ,那么令 g(i) 为 𝕬ᵢ 中任意元素;假设 ρ(i)>0 ,那么 𝕬ᵢ ⊨ ∃xϕᵨ₍ᵢ₎(x,fᵨ₍ᵢ₎₁(i),⋯,fᵨ₍ᵢ₎ₙ(i)n(i)),令 g(i)

满足 𝕬ᵢ ⊨ ϕᵨ₍ᵢ₎(g(i),fᵨ₍ᵢ₎₁(i),⋯,fᵨ₍ᵢ₎ₙ (i)) 。不难看出 [g] 在 𝕬 中实现了 p(x) ,即对于任意 ψ(x)∈p(x) 、都有 {i∈I:𝕬ᵢ ⊨ ψ(g(i))}∈U ,因此定理成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

惊囚于夜 连载中
惊囚于夜
Aiu_2
不要凝视,天黑请闭眼……严卿起来时,发现周边并不是自己睡前的模样,而是一片黑。这种黑不是视觉上的,而是感官消失,周围静谧的黑……“刺啦—刺啦......
0.7万字9个月前
幸运心月 连载中
幸运心月
回礼信
裴胥熙,俢真界的一股清流,年纪轻轻便已成高就
1.0万字7个月前
mbti:多重世界 连载中
mbti:多重世界
星辰梦呓
华倩怜(isfp)在一次上课走神后,意外发现了自己居然拥有异能,更重要的是,这居然跟她失踪了十几年的母亲有关…时空穿越器的出现,让华倩怜来到......
12.0万字4个月前
渊中雀起 连载中
渊中雀起
三水叔
翎羽,身份高贵的小殿下,在某日自己的父神来找自己将一个任务交给自己去解决,他无奈,他好奇,他想去凡尘看看。北辰渊,大乾皇帝内定的太子,只是他......
2.8万字4个月前
逆爱:大馋丫头什么都要 连载中
逆爱:大馋丫头什么都要
驴蛋蛋啊
《逆爱》更新啦!!!
0.2万字2个月前
神明未故 连载中
神明未故
迎鹤飞
一夜间,天界崩塌,神明分裂成“魂”与“魄”。萧然,流浪千年的苦命儿,竟藏有神之真魂;而高坐神殿的“神子”萧衍,却是无情无感的神魄。两人皆精于......
10.9万字2个月前