数学联邦政治世界观
超小超大

(数学定理)钻石原则

钻石原则 ◊ 是指存在钻石序列 ⟨Sα:α<ω₁⟩ 满足 1.Sα⊆α 和

2.∀X⊆ω₁({α:X∩α=Sα}是ω₁稳定集) ,不难看出 ◊ → CH :任选 X⊆ω ,由于 {α∈ω₁:X∩α=Sα} 是 ω1 稳定集,因此存在 α>ω 满足 X=X∩α=Sα ,令 f(X)=min{α:X=Sα} ,则 f 是 Pω → ω₁ 的单射。

下面我们证明 V=L → ◊ ,该定理最早由数学家Jesen证明。

证明:注意到钻石序列的否定形式:存在 X⊆ω₁ 和 ω₁ 的无界闭集 C 满足 α∈C → X∩α≠Sα ,以及 L 满足的两个重要性质: AC 和凝聚性引理。

先在 L 中定义一个钻石序列:令 ⟨S₀,C₀⟩ 满足 S₀=C₀=∅ ;假设 ⟨Sα,Cα⟩ 以及定义,令 Sα₊₁=Cα₊₁=α+1 ;假设 α 是极限序数且 ⟨Sᵦ,Cᵦ⟩,β<α 已经定义,令 ⟨Sα,Cα⟩=min<ʟ{⟨A,B⟩:ψ(α,A,B)} ,其中 ψ(α,A,B) 当且仅当 A ⊆ α 、 B 是 α 的无界闭集且 ∀β∈B,(A∩β≠Sᵦ) ;如果这样的 ⟨A,B⟩ 不存在,那么令 Sα=Cα=α 。递归可得序列 ⟨Sα:α<ω₁⟩ 。根据凝聚性引理,不难看出上述构造在 Lω₂ 以内即可完成。下面证明此为钻石序列:

反证法,假设 ⟨Sα:α<ω₁⟩ 不是钻石序列,那么存在 X ⊆ ω₁ 和 ω₁ 的无界闭集 C 满足 ∀α∈C,(X∩α≠Sα) ,令 ⟨X,C⟩ 是满足上述要求的 <ʟ 下最小元。令可数模型 M 满足 {⟨X,C⟩,⟨Sα:α<ω₁⟩,ω₁}⊆M≺Lω₂ (注意不是 ω₁⊂M 而是 ω₁∈M )。令 A=M∩ω₁ ,由于 M ⊨ ∃γ(γ={x:x∈ω₁}) 且

M ⊨ γ是序数 ,根据 M≺Lω₂ ,那么Lω₂ ⊨ γ是序数 ,因此 A=γ ;同时,因为 M ⊨ C是无界闭集 和 M ⊨ C在γ之下无界 ,根据 M≺Lω₂ ,因此 γ∈C 。令 π:M → Lδ 为坍缩映射,那么有 π(ω₁)=γ 、 π(X)=X∩γ (假设 γ∈η∈X∧η∈M ,那么 π(η)∈γ ,但这与 π 是单射且 ∀x∈γ(π(x)=x) 矛盾,因此 η∉M ,则有 π(X)=X∩γ )、 π(C)=C∩γ (与上同理)、 π(⟨Sα:α<ω₁⟩)=⟨Sα:α<γ⟩ (这是因为 Sα ⊆ α<γ )。由于 π 是同构映射且 M 满足“ ⟨X,C⟩ 是满足 ∀α∈C,(X∩α≠Sα) 的 <ʟ 下最小元”,因此 Lδ 满足“ ⟨X∩γ,C∩γ⟩ 是满足 ∀α∈C∩γ,(X∩α≠Sα) 的 <ʟ 下最小元”。由于 π(C)=C∩γ 是 γ 的无界闭集,因此 C∩γ=Cᵧ 且 X∩γ=Sᵧ ,但这与 ∀α∈C,(X∩α≠Sα) 和 γ∈C 矛盾,反证定理成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

天穹之虚 连载中
天穹之虚
闻不见此人
打破异界的梦境,剩下的就是真实世界的虚伪与假象。「天穹」,源自天空的无望与宇宙的结合。一个内含许多时代的科技与包含「七罪」的执政。脱离不了的......
9.8万字8个月前
生活里的生活 连载中
生活里的生活
大森林狂想曲
未来的潮流趋势,谁也不知道,科技是永恒的话题
6.4万字7个月前
半心遗音 连载中
半心遗音
惬笺
主要讲述的是一个法器被众人抢夺的多元素小说,也有宫斗,剧情狗血,慎入
1.1万字5个月前
宴行昭 连载中
宴行昭
今熹余朝欢
双强+双暗恋+搞笑+重生+甜宠+互撩【沙雕可爱小师妹×温柔纯爱二师兄】反差:【美强惨疯批美人×心软粘人忧郁美人】前世,君宴岺成神之时遭人暗算......
3.4万字4个月前
来到人间看NPC们运行 连载中
来到人间看NPC们运行
130***364_3793332478
父母的坎坷人生经历却换来一个天赐的福祥娃娃,这个娃娃六亲缘浅,与父母观念差异大,与哥哥,姐姐有所不同,穷不出3代,孩子们崛起,让自己的家人走......
0.2万字3个月前
五行组合以善为本 连载中
五行组合以善为本
荔枝最理智鸭
郁芝被迫进入游戏,完成第一个副本游戏后,获得了异能:水。之后遇到了几个队友,组成了“五行”组合,在游戏里大杀特杀(简洁版简介,想要知道更多细......
0.5万字2个月前