数学联邦政治世界观
超小超大

Weierstrass逼近定理

Weierstrass逼近定理是数学分析中的核心定理。陈述如下:

Weierstrass逼近定理

设 f(x) 是 [α,b] 上的连续函数,则存在多项式函数列 {fₙ(x)} ,使得 fₙ(x) 一致收敛于 f(x)

附注 不失一般性,下面只对于 [α,b]=[0,1] 的情形证明。

证明

由 f 在 [0,1] 连续,故有界 |f|≤M ,且在 [0,1] 一致连续,即

m

\[∀ε>0, ∃δ>0,当 |─−x|<δ时,

m ε n

|f(─)−f(x)|<─\]

n 2

构造Bernstein多项式 m

\[Bₙ(x)=∑ⁿₘ₌₀Cᵐₙxᵐ(1−x)ⁿ⁻ᵐf(─)\]

n

构造随机变量 X∼B(1,x) ,以及 X 的独立同分布随机序列 {Xₙ} ,则 Sₙ=∑ⁿₖ₌₁ Xₖ ∼B (n,x),且 E(f(Sn

─ m

n))=∑ⁿₘ₌₁f(─)b(m;n,x)=Bₙ(x)

n

此外

(Sn) (1)

E ──=──nx=x

(n) (n)

(Sn) 1 x(1−x)

D ──=──nx(1−x)=────

(n) n² n

1

≤ ─

2

由Chebyshev不等式

Sₙ 1

P(|─−x|≥δ)≤──

n nδ²

|Bₙ(x)−f(x)|

Sₙ Sₙ

─ ─

=|E(f(n)−f(x))|≤E|f(n)−f(x)|

\[

Sₙ

=E(|f(n)−f(x)|1{|Sn

n−x|≥δ})

Sₙ Sₙ

── ──

+E(|f(n)−f(x)|1{|n−x|<δ})\]

Sₙ Sₙ

─ ─

对第一项, \[E(|f(n)−f(x)|1{|n−x|≥δ})

m m

── ──

=∑{m:|n−x|≥δ}|f(n)

−f(x)|P(Sₙ=m)\]

\[≤2M∑{m:|m

──

n−x|≥δ}P(Sₙ

Sn

──

=m)=2MP(|n−x|≥δ)

2M

≤ ── \]

nδ²

Sₙ Sₙ

── ──

对第二项, \[E(|f(n)−f(x)|1{|n−x|<δ})

m m

── ──

=∑{m:|n−x|<δ}|f(n)−f(x)|P(Sₙ=m)\]

m

ε ──

<──∑{m:|n−x|<δ}P(Sₙ=m)

2

Sₙ

ε ── ε

=──P(|n−x|<δ)≤──

2 2

2M ε

|<──+──

因此 |Bₙ(x)−f(x) nδ² 2 。

4M

取 N=──

εδ² ( N 与 x 无关),则当n>N 时, ∀x∈[0,1], |Bₙ(x)−f(x)|<ε ,由此得到 Bₙ(x) 一致收敛于 f(x) ◻

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

走吧,赚钱(名字:驱死病害) 连载中
走吧,赚钱(名字:驱死病害)
烂人王
【双男主】【黑暗】【刀子多】【死亡】【多CP但还算正经】【要素较多】(我不会做小说插图)《五胡乱华》《甲午战争》《克里米亚战争》《第一次世界......
0.9万字8个月前
亡命之徒:救赎 连载中
亡命之徒:救赎
上官子兰
被人改造的实验体是根本没有人类的感情…———————————————这里是世界上最大的实验基地也是设备样样俱全的“莫古拉实验基地”里面的科学......
0.8万字8个月前
明暗交响 连载中
明暗交响
屿枫夜
她,曾经是大陆的魔女,人们说她残害亲眷,阴险狠毒,为楚家之耻。最后,她死于那个没有血缘关系的“哥哥”之手。后来,她重生,伪装,复仇。假扮学生......
12.9万字7个月前
堕黑夜 连载中
堕黑夜
⚈้ॢ詮釋愛づ◡ど
记住,这是我的小说。写它是与我自己对话的方式。它不是为了取悦他人,而是为了寻找内心的答案。我用文字梳理生活的点滴,提醒自己也提醒每一位读者:......
7.1万字3个月前
望春台 连载中
望春台
松与杉与花与树
世界已经变了世界还将继续变化你说的故事也许是真的感谢观看我写的故事,阅读过程中如有不足,请多多指教感谢观看
0.4万字3个月前
小皇帝别哭,摄政王强势宠爱 连载中
小皇帝别哭,摄政王强势宠爱
鸽子大魔头
大概率就是摄政王和他亲爱的小皇上的故事
2.7万字2个月前