数学联邦政治世界观
超小超大

有限集基数

(笔记来自 Kαrel 和 Herbert 。)

基数

• 基数表示有限集合中元素个数,并通过比较基数大小来判断有限集合间的大小关系。

• 无限集合的元素无法“数清”但至少可以判断肯定多于任何有限集的元素个数。

• 无限集合间的相等关系无法通过元素个数比较,但可以通过找双射函数来实现。(若存在双射函数,则两集合等势)

【例1】(0,1) 与实数集 R 等势:存在双射函数

1 1

f ── — ─,

1 — x x

满足 (0,1) 的实数跟所有实数之间的一一对应关系。

. .

0 1

【例2】N 与 N² 等势:存在双射函数 f(x)=x²

(上两个例子表明,无限集与其真子集等势。)

有限集基数算律

加法运算: |A|=κ |B|=λ,且A∩B=ф ⇒ κ+λ=|A∪B| (基数加法满足交换律和结合律。)

乘法运算:

|A|=κ |B|=λ ⇒ |A × B|=κ • λ。

(基数加法满足交换律、结合律和分配律)

定理:若集合 |A|=|A'| |B|=|B'|,则 |A × B|=|A' × B'|

证明:集合A 与 A' 等势 ⇒ 存在双射函数 f:A → A',同理,存在双射函数 g:B → B' ,定义函数 h:A × B → A' × B', h(α,b)=(f(α),g(b)) ⇒ h 是 A × B 到 A' × B' 的双射函数,因此 |A × B|=|A' × B'| 。

例题: κ+κ=2 • κ

证明:若|A|=κ,则 2 • κ 相当于 {0,1} × A 的基数。 {0,1} × A=({0} × A)∪({1} × A),且 ({0} × A)与 ({1} × A) 不相交, 丨{0} × A|=|{1} × A|=κ,因此 丨{0,1} × A|=κ+κ=2 • κ 。

推论:若 κ ≥ 2 ,则 κ+κ ≤ κ • κ 。

指数运算:若 |A|=κ ,则 |B|=λ ,则|Aᴮ|=κλ。( Aᴮ:从 B 到 A 的函数; |Aᴮ|=κλ :从 B 到 A 的所有函数的数量)

定理:若集合 |A|=|A'| |B|=|B'| ,则 |Aᴮ|=|A'ᴮ'|

证明: 集合A 与 A' 等势 ⇒ 存在双射函数 f:A → A' ,同理,存在双射函数 g:B → B'。 令 k 代表从 B 到 A 的一个函数,即 k∈Aᴮ ,令函数 H Aᴮ → A'ᴮ',则 H(k)=f • k • g⁻¹, H 为 Aᴮ 到 A'ᴮ' 的双射函数。

k

A ← B

f↓ ↓g

A’ ← B’

H(k)

指数运算性质

• κλ⁺μ=κλ • κμ

• (κλ)μ=κλ•μ

• (κ • λ)μ=κμ • λμ

康托定理: |Ⅹ|<|P(X)|=2|ˣ|

定理:已知集族 S, ∀X∈S ∃集合 Y,满足|Y|>|∪S| 。

利用康托定理证明:令

Y=P(∪S) ⇒ Y>|∪S| ≤ |X|。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

东方末神秘人 连载中
东方末神秘人
失落的女孩_19702472693173
2.6万字11个月前
路西法今天堕天了吗? 连载中
路西法今天堕天了吗?
加木男
上帝不容亵渎,拥护他的前行。
3.4万字10个月前
长夜的消散 连载中
长夜的消散
泪落朽木
白色的风筝也要独属于它的夜晚
0.2万字8个月前
致命的爱啊 连载中
致命的爱啊
whatisyourdream
爱情真的好复杂,不管是兄弟之间的爱情,还是恋人之间的爱情,都是爱情,但他们始终是有区别的,我不可能和弟弟在一起,我爱的人是阿铠,而弟弟应该去......
3.1万字7个月前
私亦心 连载中
私亦心
舌廿廿
苏芯瑶从小就是一个活泼开朗的女孩,但由于学习进度的增加变的内向,曾经的佼佼者也变成了学渣,但在高中的最后几个月经过不懈的努力考进了全国最高学......
4.8万字5个月前
迷雾迷踪……ch 连载中
迷雾迷踪……ch
桐穆
因为穿越到了一个地方,友谊产生了裂缝,没想到最后的罪魁祸首居然是他……
2.0万字3个月前