数学联邦政治世界观
超小超大

数学定理(一)

power Dedekind infinite cardinal定理

以下内容均不假设选择公理。

称一个集合α 是power Dedekind infinite,当且仅当 Pα ≥ ω。

引理:集合α 是power Dedekind infinite,当且仅当 α ≥* ω ,其中 x ≥*y 当且仅当存在从 x 到 y 的满射 ⊣

定理:假设α 是power Dedekind infinite的且 b ≤* α ,那么 ω ≤* b∨b+ω ≤* α 。

证明:假设ω ≰* b,定义 g:α → b 是满射。由引理知存在 f:α → ω 是满射,现在求存在满射 σ:α → b+ω 。

定义αₙ=f⁻¹(n) ⊂ α 和 bₙ=g[αₙ] ⊆ b,则 i ≠ j → αᵢ ∩ αⱼ=∅ 且 α=∪αₙ 。

假设∀n∃m>n(bₘ₊₁ ⊈ b₀∪· · ·∪bₙ),那么定义 φ:∪bᵢ → ω

i

,令 φ(x)=n 当且仅当 n=min {k:x∈bₖ} ,则 φ 是从 ∪bᵢ → ω 的满射

i

,这与 ω ≰* b矛盾,反证存在自然数 n 满足 b₀∪· · ·∪bₙ ⊇ ∪bᵢ

i∈ω

,因此 b=b₀∪· · ·∪bₙ 。

定义ᵇ'⁰⁼ᵇ⁰,ᵇ'ⁱ⁺¹⁼ᵇⁱ⁺¹ ⁻ ∪bₖ

k≤i

,则 b'ᵢ∩b'ⱼ=∅ 。由于对于任意 k , g[αₖ] ⊆ b'₀∪· · ·∪b'ₙ ,因此我们可以把 αₖ 划为 n+1 个不相交的子集 α⁰ₖ,· · · αⁿₖ,其中 g[αⁱₖ] ⊆ b'ᵢ 。对于任意 0 ≤ i ≤ n ,令 cᵢ=∪αⁱₖ

k∈ω

,可证 cᵢ∩cⱼ=∅ 且 α=c₀∪· · ·∪cₙ ,因此存在 i ≤ n 满足 f[cᵢ] 是 ω 的可数子集。

下面证明存在k 使得 ᵇ'ⁱ⁼∪g[αⁱₙ]:

n≤k

否则 ∀k,b'ᵢ ⊃ ∪g[αⁱₙ]

n≤k

,那么就存在 b 到 ω 上的满射,这与 b ≱* ω 矛盾,因此存在 k 使得 b'ᵢ=∪g[αⁱₙ] 。

n≤k

由于对于任意自然数 l 都有 f[αⁱₙ]=l ,因此 f[∪αⁱₗ]是 ω 的可数子集。

l>k

令 ʰ:ᶠ[∪αⁱₗ] → ω 为双射。

l>k

到此定义满射σ:α → b+ω:假设 x∈cⱼ,j ≠ i,那么 σ(x)=g(x) ;假设 x∈∪αⁱₙ

n≤k

,那么 σ(x)=g(x) ;如果 x∈∪αⁱₙ ,

n>k

那么 σ(x)=h◦f(x) 。可知 σ 即为题目所求。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

金花图万事书 连载中
金花图万事书
镀金鸢尾
愿望不都是美好的坚定的感情不都是充满对肉身及财富地位的渴望的人不都是为满足自己的灵魂而活的——当然,这要看你怎么判断这几句话了,是犹带猜疑的......
1.3万字1年前
快穿文一本 连载中
快穿文一本
荒林
本人起名废,简介也不会。难哉被“意识”废弃的周夜,在毛遂自荐的系统引导下,误入歧视
1.6万字10个月前
时钟妤你 连载中
时钟妤你
沈噫予
茫茫人海与你相遇,这是真正的幸运
0.2万字9个月前
寂暗梦回 连载中
寂暗梦回
黎池念
你觉得你现在处的世界是真实的,还是在一场游戏中?亲爱的玩家,你不觉得现在的生活太无趣了吗?和我一起来参加这场有趣的游戏吧~
8.6万字7个月前
星之誓 连载中
星之誓
清恒梦锦
光明与黑暗,两个极端的势力从相识到相爱
0.5万字5个月前
炮灰女配今天也要拯救六界 连载中
炮灰女配今天也要拯救六界
甜周周
  #群像+沙雕搞笑+穿书+重生+系统+死对头文学+前生今世  江凌月意外穿进一本仙侠虐恋小说中,成了女主的同名师姐,出场却不到十分钟,就被......
1.6万字4个月前