数学联邦政治世界观
超小超大

(数学解释)文章

决定性公理

如果采用ZF+AD(决定性公理)系统,决定性公理可以每个实数子集都可测。

决定性公理的一致性相当于无穷个伍丁基数的一致性。

要想证明不可测集的存在性,必须依赖AC(选择公理)。

不可描述性

从不可达基数起这些基数全是通过对V绝对不可描述的扩展得到的,不过数学上的不可描述不是你们说的这些都无法成为X的描述,只有我独家可以。

而是这些描述不仅X有,Y也有。比如一个世界中各方面都很像现实世界可以说包含现实,但实际这些特征都不只是现实世界独有,一堆虚构世界都照样有,所以光靠包含这些描述并不能真正占有现实世界,现实世界就是不可描述的。

比如,如果ω就是大全,那么“对于一切n,都存在一个m使得n﹤m”是ω中的一个基本事实,但对于任何一个有限的世界,都存在一个极大数U,但对于U是不存在一个大于它的数。

所以“对于一切n,都存在一个m使得n﹤m”是一个只有ω才具有的描述而不被其下的小世界具有的,所以ω可以被这句话描述,反之,“存在一个极大数或最强者”是任何有限世界都具有的,无法特定描述包含某个有限世界。

所以对于那些大基数的大往往都是通过这种方式体现:假设大基数公理,我们推导出一个十分强大的性质p,但由于k的不可描述性,k之下也存在满足这个性质的a,并且往往会有很多,所以这个用来描述k非常大的性质其实还是不足以描述k之大。

不动点

凡事皆有原因,对任意x,均有一f(x),原因亦又其原因,对f(x)亦存在f(f(x)),并且,身为原因的一方优先于其结果,比如上帝是世界的原因优先于世界,记f(x)>x,而所谓的不动点,f(x)=x,则表明其是自身的原因。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

小甜文双男主合集 连载中
小甜文双男主合集
速成鸡
双男主短篇小合集
6.5万字1年前
东方末神秘人 连载中
东方末神秘人
失落的女孩_19702472693173
2.6万字1年前
清依传 连载中
清依传
乔忆娇
原来,有一个人,从不在身边,心里却总是惦念!有一段情,隔着天涯,却倍感温暖!有一种承诺,不需说一生一世,可你知道此生此世,你注定与他相随……......
2.6万字12个月前
琉璃仙途 连载中
琉璃仙途
清辰明月
观影忆往昔,未来载无限。“世界万灵皆具善恶两面,心灵本就复杂变幻莫测,难以一言以蔽之,怎能轻易定夺善恶!”——琉璃“嫉妒什么的最讨厌了,别人......
6.9万字12个月前
你是真的狗啊! 连载中
你是真的狗啊!
倜傥二哈
身为修真界最后的一只天狼,瞿闻本打算就这么吃吃睡睡过完一生,直到有一天,他捡到了一本书。书中好巧不巧也有个叫瞿闻的天狼,这个“瞿闻”只出场了......
1.1万字5个月前
神明未故-d873 连载中
神明未故-d873
迎鹤飞
一夜间,天界崩塌,神明分裂成“魂”与“魄”。萧然,流浪千年的苦命儿,竟藏有神之真魂;而高坐神殿的“神子”萧衍,却是无情无感的神魄。两人皆精于......
12.3万字3个月前