数学联邦政治世界观
超小超大

证明Calabi-Yau流形的和乐群为SU(n)?

Kahler条件已经把和乐群从SO(2n)限制成了U(n),所以只需要证明Calabi-Yau条件限制行列式为1就行。

Calabi-Yau流形°的定义是第一Chern类平凡c₁=[Tr ℂ R]=0。CY条件只是说Trℂ R的上同调类平凡,而不是Trℂ R逐点为零。而Calabi猜想告诉我们Trℂ R=0 的Kahlermetric存在且唯一。

现在我们可以把曲率形式“R看成无穷小平移一圈的改变。由well-known的式子

det(1+M)≈1+TrM

则由TrR=0即得到和乐群为SU(n)。这个不严谨但直观的证明来自Hori etal.

Mirror symmetry。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

(无限流)我就是想交个朋友 连载中
(无限流)我就是想交个朋友
麦穗花
【欢迎来到无限世界[域],在这里,特殊能力唾手可得,死亡更不是梦想,随时随地,身临其境,尖叫和欢笑,惊骇与心动,让我们——娱乐至死!】(ㅍ_......
1.3万字8个月前
末世之人类命运共同体 连载中
末世之人类命运共同体
诺尔塔斯
主角在末世重新成长建立三观结交朋友共同创建人类命运共同体的过程。——————背景介绍:一个贪玩的高维生物不小心将一个使宇宙的再生平行世界的能......
1.5万字5个月前
逆仙之途 连载中
逆仙之途
土豆西红柿
这是一个神秘而广袤的修仙世界,名为灵境。灵境中,各个门派林立,修仙者们追求着长生不老与强大的力量。天地间灵气充盈,但修仙之路充满艰辛与挑战,......
5.4万字4个月前
奇思妙想,小说合集 连载中
奇思妙想,小说合集
king2003
此文不只有一个故事,很多故事,每一个故事都是短篇小说。第一篇:花心痞帅硬汉;季北辰VS独立理智坚韧冷艳美女;莫希。(现代言情,花心浪子遇真爱......
6.1万字4个月前
蛇莓穿越初中之穿越之旅 连载中
蛇莓穿越初中之穿越之旅
屑榵榵
蛇莓穿越到了初三3班成为学生,从27章开始,蛇莓的名字改为了白珠樱,第29章开始模仿怪盗基德不更新了
115.9万字3个月前
喜灰发图聊天群 连载中
喜灰发图聊天群
叶辰冰
3.7万字3个月前