数学联邦政治世界观
超小超大

Schroder-Bernsteri(S-B)定理

S – B Schroder – Bernstein 定理大概是说:若有单射f:A → B和单射g:B → A,我们可以构造出双射h:A → B,具体的想法是,既然每个单射在自己的定义域和值域上都是双射,我们可以把A分成不交的两部分,一部分用f映过去,记为E,将A – E用g⁻¹映过去,这样就得到了双射h,为了得到这样的E,我们首先观察到A – E=g(B – f(E)),即 E=A – g(B – f(E)),则问题等价于寻找映射

H:ℙ(A) → ℙ(A),X ↦ A – g(B – f(X))的不动点,对于形如H:ℙ(A) → ℙ(A),的映射,我们怎样找到它的不动点呢?事实上我们有如下定理:

定理1.0:对于形如P:ℙ(A) → ℙ(A)的映射,如果它满足:若X ⊂ Y则P(X) ⊂ P(Y),那么它有不动点。

证明:我们取所有Ⅹ ⊂ P(X)的元素X组成的集合,记为S,容易证明∪S是S的⊂ – 上确界,记为α对任意s ∈ S,我们有s ⊂ P(s) ⊂ P(α),故P(α)是S的一上界,我们有α ⊂ P(α),于是P(α) ⊂ P(P(α)),我们有P(α) ∈ S,因此P(α) ⊂ α\易知映射[公式]满足定理条件,存在不动点,这就证明了S-B定理。 通过类似的论证我们可以证明一个更一般的定理:

定理1.1(Banach映射分解):若有映射f:A → B和映射g:B → A,

─ ─

则存在分解A=X∪X,B=Y∪Y,使得

─ ─ ─

f(X)=Y,g(Y)=X,且X∩X=∅,

Y∩Y=∅ 证明思路同样是寻找h:X ↦ A – g(B – f(X))的不动点

以下将 Schroder-Bernsteri 定理简记作S-B 定理,此定理对集合基数的比较及证明集合之间的等势起很大的作用.

【例5.6】设 A,B,C 为三个集合,若A⊆B⊆C,且 A≈C,证明 A≈B≈C.

证明 由于 A⊆B⊆C 且 A≈C,由定理5.7的推论可知,A ≤ • B且B ≤ • A,由S-B定理可知A≈B,又由定理5.3可知,A≈B≈C.

定理 5.13 R≈(N→2),其中 N→2=2ᴺ.

证明 由 S-B 定理,只需证明 R ≤ • (N→2) 且(N→2)≤ • R.

(1)先证R ≤ • (N→2),又只需证明(0.1) ≤ • (N→2).为此构造函数 H;(0.1)→(N→2).对于∀z∈(0.1). z 表示二进制无限小数(注意表示法的惟一性),H(z):N→〈0.1〉.且∀n∈N,取 H(z)(n)为z的第(n+1)位小数.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

艾莉亚的魔法之旅 连载中
艾莉亚的魔法之旅
星落深渊
艾莉亚的魔法之旅
0.9万字6个月前
你就是我的救赎mr 连载中
你就是我的救赎mr
陌然mrr
有一位叫做梦佳的神明,因神明有一项不能拥有感情的规则,所以从小便欠缺感情,她自己也知道自己和别的神明不一样,她更想要拥有感情的生活,没有感情......
2.8万字4个月前
岁岁闲 连载中
岁岁闲
慕迟遇
生活琐碎的片段
14.9万字3个月前
江山弈 连载中
江山弈
流年付笑谈
女主心智成熟不作妖,腹黑且毒舌,有仇必报,完全不圣母,各方面都不会吃一点亏,武力值极高,背景强大。绝对大女主,爽就完了。本文不止一个穿越者。
0.7万字2个月前
末世躺平法则 连载中
末世躺平法则
余婞自僖
如果到了末世,你想干什么?是努力奋斗去维护世界和平,还是想救他人于水火?面对未知的一切,你想怎么办
1.1万字2个月前
秦之恋语熙 连载中
秦之恋语熙
稀尔
她羽翼族的公主熙尔诺亚被冰封的数千年后,醒来后的校园热恋语!!!
0.8万字1个月前